Process

At Exact Engineering, we like to approach engineering problems in a simple yet deterministic manner. Essentially, we follow a three step process. First we determine the requirements definition. Second, the design process commences, Third, we perform analysis to determine the performance of the design. Often, the analysis results will require a design change and thus the process tends to be iterative. The end goal is a design that meets the requirements with the fewest iterations and the lowest engineering costs.


Requirements

The key to keeping the cost low and shortest time to market is a well defined set of requirements. Requirements are necessary for determining the big three:

  • Complexity
  • Scope
  • Cost

Often times a client will come to us with only a concept. In this case, we work very closely with them to establish a requirements document. Well-defined requirements not only save time and money, but generally yield the best product. Pictured is a sample of a concise and cohesive set of performance requirements for a small mechanism. Although not all-inclusive, this is a good example of a set of requirements from which one could initiate design.

process_requirements

Design

From the established set of requirements, the design process can be fully engaged and in many cases will require the application of a variety of engineering disciplines. Some examples include:

  • Materials engineering for materials selection and material finishing processes
  • Electrical engineering for actuator and sensor control
  • Mechanical drafting of manufacturing drawings to ANSY Y14.5M 1994 standards
  • Manufacturing engineering for Design for Manufacturability (DFM) and Assembly (DFA)
  • Cost engineering for meeting design to unit production cost (DTUPC)
project1-fig1


Analysis

Once the design has progressed to the level of best engineering judgement, it is often necessary to perform analysis to optimize the design. This can be as simple as ensuring a static structural component can a given load or complex as a shock analysis of a product impact as in a drop test. Regardless of the complexity, we have the tools and more importantly the expertise to solve your analysis problems. Below is a summary of our analysis capabilities.


  • Structural for determining stresses, stiffness and deflections
  • Modal for determining natural frequencies
  • Harmonic for cyclical loading such as rotating machinery
  • Random vibration for time dependent loads such as rocket launches
  • Transient for determining time varying effects such as shock loads
  • Thermal for determining the effects due to changing temperatures
process_analysis1

Contact Us:

captcha